Le fil

Indispensable : R pour la statistique et la science des données

Expertise - 12 novembre 2018
Benoit Thieurmel, responsable R&D de Datastorm, est l’un des dix co-auteurs de l’ouvrage « R pour la statistique et la science des données », publié aux Presses Universitaires de Rennes sous la direction de François Husson.
Le logiciel R est un outil incontournable de statistique, de visualisation de données et de science des données tant dans le monde universitaire que dans celui de l’entreprise. Ceci s’explique par ses trois principales qualités : il est gratuit, très complet et en essor permanent. Récemment, il a su s’adapter pour entrer dans l’ère du big data et permettre de recueillir et traiter des données hétérogènes et de très grandes dimensions (issues du Web, données textuelles, etc.).
Des cas concrets présentés sous forme de fiches balayent notamment un large spectre de techniques en traitement des données : intervalles de confiance et tests, procédures d’analyse factorielle, classification non supervisée, méthodes usuelles de régression, machine learning, gestion de données manquantes, analyse de texte, fouille de graphe… Indispensable !
« Aujourd’hui, l’Intelligence Artificielle nous emmène sur des terrains plus complexes »

Titouan ROBERT est Data Scientist chez DataStorm depuis 2016. Féru de data projects liés au secteur de l’énergie, dopé à la R&D, il partage sa jeune expérience et jette déjà un regard sur demain. Titouan, un mot sur ton parcours. Et bien j’ai suivi mes études en Bretagne : DUT Statistique et Informatique Décisionnelle à […]

Méthodes de Clustering : quand les Travaux de DataStorm servent la Recherche Académique

Si la recherche fondamentale passe par la mise en œuvre de données produites sous hypothèse bien maîtrisée, il faut ensuite inscrire la méthode dans un périmètre de fonctionnement réel. C’est ce que DataStorm peut offrir aux chercheurs. Un exemple : afin de travailler sur le contrôle des effacements diffus dans la distribution d’énergie, DataStorm a […]

R&D
Matinée R&D avec Eric Matzner-Lober et Nick Hengartner

Les équipes de DataStorm ont présenté leurs travaux de R&D interne à Eric Matzner-Lober et Nick Hengartner, deux chercheurs reconnus bien au-delà de leur communauté. Deep learning, réseaux antagonistes, NLP, interprétabilité des algorithmes de machine learning… ces regards croisés vont alimenter le plan R&D 2019 de DataStorm. Exigeante, riche et réciproque. Voilà comment qualifier la […]

Toute l'expertise du groupe ENSAE

Plateau de Saclay
5 Avenue Henry-Le-Chatelier
91120 PALAISEAU - FRANCE

Paris
24 rue Barbès
92120 MONTROUGE - FRANCE