Le fil

BNP Paribas

- 25 février 2019

Les institutions bancaires ont toujours été précurseurs dans l’exploitation des données, en particulier pour le contrôle de leurs risques. Depuis les années 90, elles utilisent des modèles de scoring du risque, très souvent basés sur des régressions logistiques s’appuyant sur des agrégats bancaires (en-cours moyen mensuel, total des dépenses, etc.). BNP Paribas a demandé à Datastorm d’évaluer l’apport des nouvelles techniques de machine learning (random forest, algorithmes de boosting, réseaux de neurons profonds, etc.) pour cette activité de scoring. Partant du cas pratique d’un score de risque de défaut à court terme des ménages débiteurs, nous avons exploité le détail de l’ensemble des transactions bancaires d’un portefeuille de 800 000 comptes pour mesurer non seulement l’apport de ces méthodes, mais également l’apport procuré par les données détaillées en lieu et place d’agrégats. Nous avons pour cela utilisé le CASD qui a permis de monter un cluster de calcul intensif parfaitement sécurisé pour manipuler de telles données et nos équipes d’ingénieurs et de chercheurs ont pu mesurer l’apport de tels modèles et des données concernant la performance des scores. L’étude a mis en évidence un apport très significatif des nouveaux algorithmes qui est pour moitié du à leur capacité à travailler en très grande dimension et donc à pouvoir exploiter des données très détaillées, et pour moitié à leur gain de performance par rapport aux méthodes probabilistes. La question de l’interprétabilité des modèles et donc de leur acceptabilité par les organismes de contrôle a également fait l’objet d’une étude spécifique à cette occasion.

Replay webinar : Comment concilier Performance business et Règlementation grâce à l’Anonymisation des données ?

Pourquoi anonymiser ? Choix de la méthode ? Comment mettre en oeuvre la k-anonymisation ? Comment outiller un département/une activité pour mener des études avec la confidentialité différentielle ? Dans ce webinar animé par Benoit Ravel, Thibaut Dubois et Martin Masson partagent leur expertise et vous expliquent comment trouver le point d’équilibre entre la maîtrise des risques d’identification et la conservation des capacités d’analyse et de valorisation des données.

« Les métiers de la data et de l’IA ne viennent pas assez à la rencontre des femmes »

Naomi Girard a rejoint la team Datastorm en 2018. Data scientist junior, elle explore toutes les facettes du métier avec un intérêt prononcé pour le Traitement du Langage Naturel et un avis éclairé sur les femmes dans la data. Rencontre.

Les exigences d’une Data Literacy réussie

Acculturer pour embarquer. Pour une entreprise, la Data Literacy est un levier puissant qui permet de partager une lecture et une compréhension commune des concepts, enjeux, processus et outils de la Data Science. Dans cet article, Benoit Ravel revient sur les incontournables de cette démarche.

Toute l'expertise du Groupe ENSAE-ENSAI

Plateau de Saclay
5 Avenue Henry-Le-Chatelier
91120 PALAISEAU - FRANCE

Paris
24 rue Barbès
92120 MONTROUGE - FRANCE